\begin{tabbing} ecl{-}trans($x$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$ecl\_ind(\=$x$;\+ \\[0ex]$k$,${\it test}$.ecl{-}base{-}tuple($k$; ${\it test}$); \\[0ex]$a$,$b$,$A$,$B$.combine{-}ecl{-}tuples(\=$A$;\+ \\[0ex]$B$; \\[0ex]($\lambda$$a$,$b$,$n$. bor(\=band(0 $<$z $n$; ($a$($n$)));\+ \\[0ex]band(($b$($n$)); ($a$(0))))); \-\\[0ex]($\lambda$$a$,$b$. bor($a$; $b$))); \-\\[0ex]$a$,$b$,$A$,$B$.combine{-}ecl{-}tuples2(\=$A$;\+ \\[0ex]$B$; \\[0ex]($\lambda$$x$,$a$,$b$,$n$. band(\=isl($x$);\+ \\[0ex]bor(\=band(\=0 $<$z $n$;\+\+ \\[0ex]if outl($x$) \\[0ex]then $a$($n$) \\[0ex]else $b$($n$) \\[0ex]fi ); \-\\[0ex]band(\=($n$ =$_{0}$ 0);\+ \\[0ex]band(($a$(0)); ($b$(0))))) \-\-\\[0ex])); \-\\[0ex]($\lambda$${\it ha}$,${\it hb}$,${\it eha}$,${\it ehb}$,$a$,$b$. bor(\=band($a$; ($\neg_{b}$${\it ehb}$));\+ \\[0ex]band($b$; ($\neg_{b}$${\it eha}$))))); \-\-\\[0ex]$a$,$b$,$A$,$B$.combine{-}ecl{-}tuples2(\=$A$;\+ \\[0ex]$B$; \\[0ex]($\lambda$$x$,$a$,$b$,$n$. band(\=isl($x$);\+ \\[0ex]if outl($x$) \\[0ex]then $a$($n$) \\[0ex]else $b$($n$) \\[0ex]fi )); \-\\[0ex]($\lambda$${\it ha}$,${\it hb}$,${\it eha}$,${\it ehb}$,$a$,$b$. bor(\=band(\=$a$;\+\+ \\[0ex]band(\=($\neg_{b}$${\it hb}$);\+ \\[0ex]($\neg_{b}$${\it ehb}$))); \-\-\\[0ex]band(\=$b$;\+ \\[0ex]band(\=($\neg_{b}$${\it ha}$);\+ \\[0ex]($\neg_{b}$${\it eha}$)))))); \-\-\-\-\\[0ex]$a$,$A$.reset{-}ecl{-}tuple($A$); \\[0ex]$a$,$m$,$A$.add{-}ecl{-}act($A$; $m$); \\[0ex]$a$,$m$,$A$.ecl{-}add{-}throw($A$; $m$); \\[0ex]$a$,$l$,$A$.ecl{-}add{-}catch($A$; $l$)) \- \end{tabbing}